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ABSTRACT

We present a new algorithm for the enhancement and detection of linear features such as roads in satellite imagery. A
cost inversely related to the response of a local linear feature operator is associated with each pixel, and an analysis based on
a dynamic programming procedure is performed to determine if each pixel under study is part of a "low cost” path of
predominantly linear pixels. The technique has been applied to several SPOT and Landsat images and shown to reduce the
false alarm rate (percentage of pixels incorrectly classified as roads) by 50% over techniques which rely on local information
alone.

«
1.INTRODUCTION

Local linear feature operators assign to an individual pixel a figure of merit for the hypothesis that the pixel is part
of a linear feature. In high contrast environments, road segments can be extracted by thresholding the output of a linear
feature operator and linking pixels that are above a given threshold!. Such an approach is insufficient in situations where
roads are not adequately imaged, e.g., as in attempting to extract roads from Landsat and SPOT imagery. Changes in road
surface, obscuration of the road by other objects such as trees, and low signal to noise ratio, tend to result in lmcar
segments that are highly disconnected.

One alternative is to use local operators which use a larger region of support than the typical 3 by 3 or 5 by 5 pixels
used by traditional operators. Unfortunately, as the region of support increases, the hypothesis that the feature under study
is strictly linear becomes suspect. Another strategy is to use relaxation procedures to iteratively reinforce and link linear
segments in close proximity to one another while de-emphasizing isolated segments. While such an approach may be
appropriate for small images, the computational cost involved in repeatedly sweeping large image arrays can be prohibitive
especially if the rate of convergence is low.

Where the above methods start with local information and work "bottom-up”, other methods which take a more
global view of the problem have been developed. One method, developed by Fischler2 is based on finding the minimum
cost path between two points. Defining a cost for a path as a function of its member pixels has been used by several
authors2.3.4,5. If the costs are low along a given path with respect to adjacent pixels, then a path which has minimum cost
is likely to retain this optimality even if some pixels are replaced by high cost pixels, e.g., in the case of noise or a road
obstruction.

We became very interested in the approach of looking at cumulative costs along paths because it i robust in the
presence of small gaps in the road and thus is a promising avenue for road extraction in noisy environments. However a key
assumption in the above method - that a road connects the two points, while appropriate for road tracking where an operator
can manually specify the beginning and end points of a road, can lead to the introduction of spurious road segments or false
alarms when it is applied in an unsupervised fashion to imagery.

The method described in this paper combines elements of the above methods. A local linear feature detector that has a
low miss rate but a high false alarm rate is used to extract candidate pixels. Then a search for paths inside windows centered
on such pixels is performed to identify connected set of pixels which have a high likelihood of being on a road. The cost
associated with a given path ending at a pixel under study is defined as the sum of the costs of the pixels which are
members of this path. Pixels from which emanate low cost paths are then classified as road pixels. Thus, a set of pixels
which lies on a road but has not been detected by the local linear operator is retained if it lies on a path of otherwise
strongly linear pixels.
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2. AMODEL FOR ROADS

: The model we assume for a road is an 8-connected path where the pixels along the path have intensities which are
significantly different than those of pixels not on this path. In actual imagery this model is rarely.satisfied since
obscuration, variable road width, limited resolution and signal to noise ratio may lead some roadpixels to have lowg_r
contrast than their neighbors. A low cost is assigned to-a pixel if it is "road-like" from a local analysis of its immediate
neighbors. Specifically, the cost is equal to an offset minus the absolute value of the difference between the local 3 by 3
average and the pixel intensity. Other road operators such as the Duda operator described in Fischler2 have also been

considered and found to yield comparable results.

Individual pixels with low cost may not be in the vicinity of other 16w cost pixels. We would like to de-emphasize
such pixels since they are not likely to part of roads. On the other hand, a high cost pixel which is on a path composed
primarily of low cost pixels should be retained. The above difficulty can be overcome by assigning a high value to a pixel
if it is part of a path consisting of "road-like" pixels. Critical to this approach is the rapid study of all "smooth" paths (of a
form described in the next section) leading to a given pixel. Specifically, we are interested in paths which cross the .
boundary of a window around a central pixel and end at this central pixel as shown in Fig. 1. The figure of merit used for
deciding whether a pixel is part of a road is equal to th& sum of the costs of each path ending at the pixel under study. If the
minimum cost path has a low enough value, then the pixel can be labeled as a road pixel, even if it has high cost.

L

Although in this paper we discuss the extraction of bright roads on a dark background, the algorithm can also
identify dark roads on bright backgrounds; unfortunately, it cannot do so at the same time. In order to be able to identify
both kinds of roads, two separate applications of the algorithm are needed.

3. ALGORITHMS FOR FINDING MINIMUM COST PATHS

As pointed out by several authors1.2, it is not necessary to explicitly calculate the cost of all paths if one is just
interested in paths with minimum cost. An iterative technique, called the F* algorithm, successively finds lower cost paths
between two points or between a set of points and a central point, eventually finding the minimum cost path or paths. The
original application was for road tracking where an human operator specifies the road endpoints and the system then finds
the path linking the two endpoints which is most "road-like."

Let the cost of each pixel in an image by given by cjj where the pixel under study is located at i = j = 0. We consider
all paths which begin on the boundary of an 2N+1 by 2N+1 window about the pixel under study. The objective is to find
the minimum cost path with one endpoint on the window boundary and the other endpoint on the central pixel. To disallow
paths which wander outside this window, let cjj = o= for i or j outside this window. A second 2N+1 by 2N+1 array is
defined, tjj, which is initialized as toQ = cQ and tjj = e elsewhere. After each iteration, tjj has the value associated with the
least cost path found so far which joins (i,j) and (0,0). After the algorithm ends, tjj will contain the cost of the minimum
cost path joining the pixel (i,j) and (0,0). Looking at (i,j) along the boundary of the window of interest and minimizing t;;
for this set gives us the value of the minimum cost path joining the window boundary and the central pixel.

The algorithm consists of two passes per iteration, one which processes image lines within a window from top to
bottom, and a second pass which analogously processes image lines from bottom to top. We describe the first pass below,
applied to a single window, i.e., a single pixel of interest in the image.

F* algorithm:
For each image line § in window:
For each pixel j in window:
v =min(ti-] j-1, -1 j. ti-1 j+1 4i j-1 ); tij = min(cj, v + ¢ij)
For each pixel j:
tij = min(tij, 4 j4 1 + cij)
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The algorithm is repeated until the values of tjj along the boundary do not change between iterations. In general it is.
difficult to specify the number of iterations required for convergence, since it depends on the complexity of the final
minimum cost paths and how often they change curvature. At the very least a single full iteration is required, and for most -
situations at least two iterations are used. We note that unlike relaxation procedures, this iterative procedure is strictly local
and applies only to the wmdow_quer study; thus it does not require many passes over the image.

The F* algorithm is completely general since it considers all 8-connected paths and can be applied 10 arbifraty -7
neighborhood shapes. We have applied this algorithm to the evaluation of minimum cost paths with success. However, we
found that the generality provided by the F* algorithm was unnecessary in our application. By making some appropriate
assumptions about the paths likely to be encountered, a new algorithm for calculating the tj values has been developed thm

is computationally more efficient than the F* algorithm.

The development of anew algorithm was motivated by two observations. Since the caléulation of a minimum cost
path is now performed at each pixel rather than over a region, the development of a computationally efficient algorithm for:
calculating these paths becomes a more critical concern. A second observation is that the minimum cost path calculation in
our work needs to be performed over a much smaller window than that required by the F* algorithm. Within the window
sizes considered, the road direction is not expected to 0 change very much- T ‘Other words, the undulating paths tracked by the
F* algorithm (see Fig. 2a) are not likely to occur in our application. Moreover, ¢értain paths which change directions -
several times as the pixel under study is approached (Fig. 2b) may require many iterations for the F* algorithm to converge.
However, such relatively straight paths may represent a road segment quite frequently and it is important to be able to
efficiently identify them.

In our work we have embedded the knowledge of relatively straight roads as the assumption that on a local basis,
roads are "monotonically approaching”. Consider the path depicted in Fig. 3 which ends at P, and contains two points, A
and B. We define the path as monotonically approaching if the distance between A and P is less than the distance between
B and P, where the distance between two points is given by the minimum number of links in a path joining two points.
By this definition, the path in Fig. 2a is not allowable since it does not satisfy our restriction, however, the path in Fig. 2b
is allowable.

It is easy to show that for 8-connected paths, monotonically approaching paths are also shortest paths. Suppose that
there is a monotonically approaching path S which is not a minimum distance path from each point on the path to the
endpoint P. Let A be the last point on S for which § is a minimum distance path connecting A and P and let their
distance be d. Such a point A always exists since it is at least the member of § which neighbors P. Let B be the next
point on § past A. Since B is connected to A, the distance to P from B can be at most d+1. However, since § is
monotonically approaching, the distance to P from B must be at least d+1. Thus the distance from B to Pisd+1. A path
of this length is given by B to A to P; thus § is a minimum distance path from B to P also.

From the argument above, we see that the paths which we will consider as the minimum cost paths joining the
window boundary and the central pixel must also be minimum distance. For a 2N+1 by 2N+1 window, this implies that
the length of all paths considered is N. The algorithm proceeds in the typical manner of dynamic programming, finding
partial solutions on the way to the full solution. The first step of the algorithm considers the problem of finding all
minimum cost paths of length one. Using this information, the minimum cost paths of length two are then found in an
incremental manner. After N steps, the minimum cost paths of length N are found. The present algorithm is described
formally below: '

Forn=1toN.
For all pixels (i,j) at a distance n from the central pixel
Find minimum value, v, of all adjacent minimum cost paths of length n-1.
Set cost for path joining (i j) to central pixel to be cjj + v.

While a single pass of the F* algorithm requires 4 adds per pixel, the above algorithm can be performed with a single add
per pixel. Since the F* algorithm usuaily requires several passes for convergence, we can expect the our algorithm to
require at least 4 to 8 times fewer additions than the F* algorithm. ,
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The algorithm is best illustrated by an example. Fig. 4 which shows a 7 by 7 window whose values denote the cost
function calculated at each pixel in this window by a local operator. We first consider the 3 by 3 neighborhood surrounding
the central pixel (Fig. 5a). The minimum cost paths joining the boundary of this neighborhood and the central pixel are
obviously the paths given in Fig. 5b. The costs of these paths are shown in Fig. 5¢c. Thus Fig. 5c contains the costs of
all paths of length 1 ending at the central pixel. The costs for the paths of length 2 can now be determined using the
previously calculated values for paths of length 1. As an example, consider Fig. 6a. Here we want to calculate the value of
the minimum cost path joining A and P. The best path is found by considering the costs of all paths of length 1 adjacent
to A (Fig. 6b), and picking the one with the minimum cost. The total cost for the path beginning at A is given by the
value of the minimum cost path of length 1 adjacent to A added to the cost of pixel A, yielding a total cost of 16 (Fig.
6¢). Similarly, all minimum cost paths of length 2 can be calculated. Using this procedure, the minimum cost paths of
length 3 are finally found (Fig. 6d). In each step of the algorithm, we calculate the minimum cost paths of length N using
the cost of each endpoint and the previously calculated costs for the paths of length N-1. The final step is to find the
minimum cost path of length 3, which is highlighted in Fig. 6d. There are several properties to note of the optimal paths
found. As expected, they are all monotonically approaching. Also, any subpath of an optimal path ending at the central
pixel is also optimal. Diagonals are all minimum cost paths joining pixels on the diagonal and the central pixel. This is
expected since any other path joining this pixel and the central pixel would have extra links. This implies that the paths do
not cross diagonals and suggests that all paths between diagonals (Fig. 7) can be calculated separately, allowing for parallel
computation. . - '

4. APPLICATION OF NEW ALGORITHM TO ROAD DETECTION

The existence of an efficient way of calculating the cost associated with all smooths paths ending at the pixel under
study allows us to pursue the strategy described in Section 2. For each pixel in the image, the minimum cost path
calculation is performed and the path of a specified length with minimum cost is found. If the total cost is low enough, the
pixel under study is re-labeled as a road pixel.

Two imagery examples are presented to illustrate the performance of the road extraction algorithm. Fig. 8a shows a
Landsat Thematic Mapper (TM) image (band 1) over Leavenworth, Kansas. In Fig. 8b, we show the result of applying the
initial cost function to this image and thresholding at the 90 percentile level, i.e., the top 10 percent pixels are displayed.
There are many isolated pixels classified as roads, while several roads are highly disconnected. We applied our algorithm to
calculate the minimum cost path in a 9 by 9 window ending at each pixel in the image. The output, thresholded at the
same percentile as before, is displayed in Fig. 8c. There are far fewer isolated pixels while several road segments have been
filled in.

Our second example, shown in Fig. 9a, is a panchromatic SPOT scene of a rural area in upstate New York. Since
the expected number of roads is much smaller than in our previous example, we used a more stringent threshold. Fig. 9b
shows the result of thresholding the original cost function at the 98 percentile level. Applying our algorithm with the same
window size as in the previous example and thresholding at the 98 percentile level yields the result shown in Fig. 9¢. For
this scene, an operator traced the true road locations and we calculated the number of pixels in Figs. 9b and 9c which were
more than a single pixel away from a true road, i.e., the number of fzlse road pixels. Our algorithm reduced the number of
false road pixels by about 50 percent.

5. SUMMARY

We have approached the problem of finding roads in low resolution aerial imagery by attempting to improve the
performance of local linear operators. A cost is initially associated with each pixel which penalizes pixels which have low
contrast compared to its neighborhood. We have used in this study a very simple measure, the discrete Laplacian. After this
step, we calculate the minimum cumulative cost path ending at each pixel using a new efficient algorithm. The cumulative
distance becomes a better discriminator of road vs. not road pixels than the original cost function. The same approach can
be used to improve the output of other feature operators such as edge detectors. We have applied this algorithm to several
Landsat and SPOT images with very encouraging results. Finally, we are in the process of taking advantage of the parallel

processing aspects of our new algorithm by implementing it on a coarse-grain parallel processor (Alliant FX-8).
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Fig. 1 Typical paths leading to a pixel under study Fig. 2 (a) Severely undulating path and (b) smooth path
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Fig. 3 Points along a minimum distance path Fig. 4 Cost function for example in text
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Fig. 5 Calculation of minimum cost paths of length one
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Fig. 6 Calculation of minimum cost paths inside window
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Fig. 8 (a) Landsat Thematic Mapper band 1 image of
Leavenworth, Kansas

Fig. 8 (c) Output of new algorithm thresholded at 90% Fig. 9 (a) SPOT panchromatic scene of upstate NY -



Fig. 9 (b) Initial road operator thresholded at 98% * Fig. 9 (c) Output of new algorithm thresholded at 98%



