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ABSTRACT

A multi-dimensional (multi-spectral) image segmentation technique
is presented, based on a multivariate Gaussian mixture distribution
which includes spatial dependence through the incorporation of a
Markov random field that governs the grouping of pixel classifications
into regions. Estimation of parameters for each component in the
mixture, an unsupervised clustering problem, is performed using a
specialization of the EM algorithm, an iterative scheme for maximum
likelihood parameter estimation. The commonly used heuristic Isodata
algorithm is cast in this theoretical framework and is shown to be an
approximate method under a restricted model assumption; furthermore,
a computational approach is presented which allows our more general
procedure to be employed with comparable efficiency. As the EM
algorithm is essentially a parameter-refinement procedure, which only
locally maximizes the likelihood function, good initial estimates for
parameters are crucial in obtaining satisfactory results. Two methods are
presented in this regard which involve incremental building of model
complexity: 1) a histogram analysis technique in which a smoothed 1D
cluster histogram is parsed into a number of components based on
inflection points; 2) a straightforward method in which a
maximum-extent cluster is replaced by a two-component mixture. The
segmentation estimate is optimal in the sense that, based on the statistical
model, it is the most probable outcome for pixel classifications given the
multi-dimensional imagery. Our segmentation technique is being used
extensively in the building of a surface-material-class database from
Landsat TM imagery; practical experience with the method is presented.

1. INTRODUCTION

Methods for multi-dimensional image segmentation abound;
surveys of previous work can be found in [7], [9], [12]. The goal of
image segmentation is to extract a set of regions in which certain
important characteristics are homogeneous. Kanade {12] divides
multispectral image segmentation techniques into three categories
comprised of: 1) those which use local spatial information for region
merging; 2) those which use spectral information (i.e., the spatially
independent distribution of the multi-dimensional data) for region
splitting; 3) those which use spectral and spatial information.

In this paper a technique is presented with which we have had
practical success, and which has a computationally efficient
implementation, It is based on computational techniques and a realistic
image model with sound theoretical underpinnings. The method is a
member of category 3), as it is based on a mixture distribution which
incorporates spatial dependence. As is customary, each component, or
cluster, in the mixture 1s modeled using a normal distribution. Here, an
unsupervised clustering technique is used to estimate the number of
clusters and the statistical characteristics of each cluster. One method
presented for parsing, or sub-dividing, clusters is a scale-space
histogram analysis technique [3] extended to a multi-dimensional
setting. Cluster parameters are refined using an iterative technique. The
spatial grouping of pixels into regions, i.e., the classification of each
pixel as a member of a cluster, is governed by a categorically valued
Markov random field which has a multi-level logistic distribution [6].
Image models using Markov random fields for segmentation and
restoration in a single-image setting have been widely used {5], [6], [9],
[13). The model promotes the formation of compact regions by
assigning a high probability to groupings of identically classified pixels.
The optimization criterion is based on a Bayesian formulation; in

particular, the segmentation is a MAP estimate, the most probable pixel
classifications given the mult-dimensional data. In the computation of
the optimal segmentation, a relaxation procedure is used which involves
locally updating the segmentation estimate {5], [9].

The paper is organized as follows. In Section 2, the clustering
procedure is described. The output of the clustering is essentially
parameters used in the segmentation, which is described in Section 3.
Experimental results are given in Section 4.

2. CLUSTERING

The model used for clustering is given by the following normal
mixture distribution, which is the marginal distribution at all pixel sites
of the multi-dimensional image data.

1 1o X i )
o232 ) o
Pl = Fm [Hﬁﬁcm'k)“p Zm\ omk M

where m indexes data dimension, x denotes {x.;: all m}, k indexes the
cluster or component; y is a relative frequency or prior weight, where
Y m=1; umy is a mean, omy a standard deviation. Note that the i.i.d.
assumption relative to location in the lattice is relaxed in the
segmentation technique presented later.

Some words justifying the clustering model are in order. The
general aim is to represent the data using a probability distribution
comprised of unimodal distributions, each of which corresponds to a
cluster of data. The data are described compactly by cluster
membership. A normal distribution provides a tractable, reasonable
unimodal distribution. Note that if the number of clusters is not
upper-bounded, the model is perfect in the sense that each
multi-dimensional datum can be assigned an infinitesimally narrow
unimodal distribution centered on itself, resulting in the data having a
likelihood of one. This of course is not a useful model, so the number
of components must be reasonably restricted. The model assumes a
diagonal covariance matrix for component normal distributions for
simplicity; the computational burden is relaxed considerably relative to a
general covariance matrix. Furthermore, even if an independence
assumption is not valid, the model is adequate if the marginal
description affords inter-cluster statistical separability. In our view,
based on experiment, a compute-time/generality tradeoff supports the
model used here.

EM Algorithm

The EM algorithm is a general procedure for maximum likelihooa
estimation given incomplete data. The specialization of the EM algorithm
applicable to the mixture estimation problem at hand is given by the
following iteration [16}
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where n indexes the iteration, (i,j) indexes location in the image lattice
consisting of N2 pixels, xjj denotes {x,;; all m}. Parameter estimates
for each cluster are in the form of sample statistics weighted by a cluster
membership probability, given by
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where p@-D(x;; | k) is the normal distribution of the multi- dimensional
data for component k, computed using the parameter set

{7, tm o Omx} @D obtained at iteration (n-1). Note k is interpreted as
a random integer as well as an index to clarify the presentation; e.g.,
p(k) could be used to denote m. The convergence behavior of the EM
algorithm is that at each iteration, the likelihood function is increased;
more information in this regard can be found in {16]. The measure used
to test for convergence of the EM algorithm is given by the
dlscriminapion information [14] between mixture distributions at
successive iterations
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Discrimination information between the model at one iteration and the
previous one falling below a specified threshold signals convergence.

It is worthwhile to note the relationship of this algorithm to the
commonly used Isodata algorithm [7]. The mixture EM algorithm is
equivalent under the assumption that standard deviations and relative
frequencies are uniform across clusters, and when the cluster
membership probability is approximated by

pkixy)= 1 ifk=arg max pk I x;)
0 otherwise (5)

In essence, a hard decision about cluster membership is made at each
iteration by using the approximation; under the assumption that relative
frequencies and standard deviations are uniform, this decision at each
pixel site is given by the cluster with its center closest in the Euclidean
sense to the multi-dimensional datum. The members of each cluster then
each contribute to a new estimate for their center to be used in the next
iteration.

Cluster Parsing

The EM algorithm is a parameter refinement procedure. Initial
estimates of parameter values are necessary, and the number of
components must be specified. In this section, procedures for building
up the model by subdividing clusters is presented. The methods involve
first assuming a single cluster, and then recursively subdividing.

A simple heuristic for subdividing is to divide in two the cluster
having the largest standard deviation, in the hope of obtaining a model
consisting of compact clusters. The parameters of the subdivided cluster
are related to the parent cluster by
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where {r, u, ¢} is the parameter set associated with cluster k along
dimension m, with

{mk} = arg max o, @)
m g{m,k} m.k

All other parameters remain unchanged. The relationship (6) is such that
the two-component mixture distribution is equivalent to the parent
distribution up to the second moment. This sort of heuristic is
commonly used in conjunction with Isodata [17]. It is more attractive
here however, as standard deviations are an explicit part of the
clustering model.

A second method for cluster sub-division is based on a
multi-dimensional extension of scale-space histogram analysis [3]. The
method (and implementation) is based on the following statistic, which ,
is an empirical marginal distribution, a cluster histogram for one
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dimension of the multi-dimensional data.
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Note that this is a sufficient statistic for calculations in (2). Compute
time is reduced because once the statistic is computed, the large sums
over all (i,j) are replaced by small sums over all values of x,, for
typical eight-bit images. Use of the statistic lessens the computation
carried out at each pixel site, the computation which dominates overall
compute time. Additionally, in parsing clusters, the histogram statistic
allows the use of scale-space histogram analysis in a multi-dimensional
setting.

Scale-space histogram analysis is described briefly as follows.
The method performs a modal analysis on a 1D histogram using
inflection points, zero-crossings of the second derivative, in a smoothed
version of the histogram. Initial estimates for cluster parameters are
related to the inflection points {x} by
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for n even, where hg() is the smoothed histogram, and relative
frequencies are appropriately normalized. A Gaussian-shaped
smoothing kernel 1s used, because it has the attractive property that the
number of modes monotonically decreases with increasing kernel width
[3]. ‘

The method is applied to the muld-dimensional data by applying
the technique recursively to the 1D cluster histograms. The
multi-dimensional data are weighted by the membership probability for a
cluster, and the weighted data are then histogrammed along a dimension
of the multi-dimensional data, resulting in a cluster histogram to which
histogram analy+is is applied. If multiple modes are found, the cluster is
subdivided according to (9) for that dimension; all other parameters
remain unchanged. The procedure is repeated, each time followed by
EM iteration, for all clusters along all dimensions until all cluster
histograms are unimodal by the histogram analysis criterion. The
recursive process results in a powerful yet manageable method for the
parsing of multi- dimensional clusters. An alternate interpretation of the
formation of the cluster histograms is as follows. The multi-dimensional
data histogram bins are weighted by cluster membership probabilities.
The result is an empirical distribution of the cluster of multi-
dimensional data. The weighted bins are projected onto coordinate axes,
forming empirical marginal distributions.

Computational Considerations

The computational impact of using the cluster histogram statistic
has been described. In addition, a look-up table approach is taken for
the calculation of cluster-membership probabilities, which are given by
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The elements of the sum in the exponent are precomputed before
sweeping the image, for each possible value of x, ; ;. For typical
eight-bit images, the computations comprise a small set, which allows
storage in a look-up table. With the remaining logarithm in ay
precomputed, the computation of the cluster-membership probability at
each pixel site involves a number of sums, an exponentiation, and a
division. The result is that the total amount of computation is
comparable to that in Isodata, which makes our algorithm an attractive,
more general alternative.

3. SEGMENTATION

The result of clustering is a set of parameters for each cluster in the
mixture model. In this section the segmentation, the final hard decision
about the cluster membership of each multi-dimensional datum on the
image lattice, is presented. The model used for segmentation is identical
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to that used for clustering with the exception that the independence
assumption associated with marginal description of the cluster
membership of each pixel is relaxed. Toward this end, the enhanced
mode! for cluster membership which incorporates spatial dependence is
described. The optimization criterion is then derived based on the
model, and computational aspects of the segmentation algorithm are
presented.

Multi-Level Logistic Model

The multi-level logistic distribution was proposed by Derin and
Elliott in their work on single-image segmentation [6]. The distribution
is conveniently presented in the context of Markov random fields,
described through Gibbs distributions. The main utility of the Gibbs
distribution lies in the fact that a random field can be described in a
tractable manner in terms of local interactions which are in accord with
desired behavior. After some preliminaries on general Gibbs models,
the specifics of the multi-level logistic model are provided.

The Markov property on a lattice is defined with respect to a
neighborhood system (m;}, where n;j denotes the neighborhood of
pixel site (i,j). The Markov property is given by

plwy | {wyg: DD} = plwy | {wig: kDeng}) 11

where {w;;} is a realization of a general 2D field. A Markov random
field can always be expressed in the form of a Gibbs distribution [1]

pUwyh = 2 exp= 3 Vo)) (12)

where ¢ is a set of pixels that are neighbors of each other, called a
clique; C is the set of all cliques; VC([WU}) is a ctique potential which
describes the interaction among members of clique ¢; Z is a normalizing
constant. The relationship between the Gibbs distribution and the

Markov property is demonstrated by the following. Consider

plws; H {wg: kb2, = p(w. D) dws {3
ij 13

where p({wij})) is given by (12). Note that the normalizing constant
and all clique potentials cancel with the exception of the potentials
involving cliques of which (i,j) is a member. This gives rise to the
Markov property (11).

The multi-level logistic distribution used here describes the
cluster-membership field, consisting of a set of cluster memberships,
one for each pixel site, denoted by {k;;}; i.e., it is a 2D field of random
integers which label clusters. Clique potentials are given by

V{k}) =—0, if all k;j in ¢ are equal
o, otherwise (14)

Only certain pair clique potentials are non-zero, which results in a field
Markov with respect to the eight nearest neighbors. Cliques and
associated potentials are depicted in Fig. 1.
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Fig. 1. Clique potentials.

Optimization Criterion
The segmentation is based on the MAP estimate, given by
tkijt = arg max p({k} | {x;) 15)
{ku}

which is the most probable set of cluster memberships given the set of
multi-dimensional data. The posterior distribution is given by Bayes'

rule

[13 P(xij | kl.l)] p({kij})
Pk} | fxh) = )

Note that as in the clustering model, the multi-dimensional data are
assumed independent given cluster membership, so that the joint
conditional distribution is expressed as a product of marginals.
However, the cluster-membership field incorporates dependence
through the multi-level logistic model of spatial interaction. Spatial as
well as spectral (in the case of multi-spectral data) clustering s
incorporated in the segmentation model. The choice of clique potentials
above associates a high probability with spatially compact regions
consisting of identically classified pixel sites. Note that the denominator
in (16) has no dependence on cluster membership, so is simply a
normalizing constant which does not effect the maximization (15).

Relaxation Method

Direct computation of the maximization (15) is not practically
feasible, as it involves a search over all possible values of the
cluster-membership field, which grows exponentially with N2, A
relaxation method is therefore presented which involves iteratively
updating the cluster membership at each site. The update involves a local
computation given by the following conditional distribution derived
from (16)

(16)
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where the sum in the denominator is over all values of ky;. Note that the
posterior distribution is Markov, so that the computation involves only
the multi-dimensional datum and the cluster membership at site (i,j), and
its neighborhood of cluster memberships. The calculation for the
particular multi-level logistic mode! used here involving only pair
cliques is given by
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The elements in the first summation in the exponent are either 2w, or
zero, depending on whether the membership neighboring (i,j) in the
clique is equal to k;; or not, respectively. This results in a conditional
probability of an outcome k;; which increases with the number of
neighbors having membership ky;. It is instructive to compare this
expression with (10), the clustering-model membership probability
distribution. It is identical with the exception of the first term in the
exponent, associated with the distribution of cluster memberships
which, because of spatial dependence, are indexed relative to the image
lattice. The look-up table method of computation is employed here as
well.

The relaxation method is a deterministic version of the Gibbs
sampler [9]. The image is repeatedly swept, with replacement at each
pixel site given by

k= arg max pl;; | {ki: () € ngh, x;) 19
ij

the estimate which is the locally most probable value. Following the
relaxation procedure, the state of the cluster membership field converges
to a local maximum of the global posterior distribution (16). To avoid
imposing the time causality on the lattice, the site visit ordering is
chosen according to the coding method [1]. The initial configuration is
the maximum likelihood estimate under an independence assumption,
which is given by (19) with the conditional probability (18) modified by
setting the first term in the exponent to zero.



4. EXPERIMENTAL RESULTS

Practical experience with the method is demonstrated with a
surface-material-classification application to six-band Landsat Thematic
Mapper (TM) multi-spectral data. Our method is currently being used in
this way to produce a database over a large geographical area.

Here, a (1383x1125)-pixel area was extracted from TM Path 14
Row 30 which covers a study area surrounding Glens Falls, NY. The
tasseled-cap transformation [4] was applied to the image resulting in
brightness, greenness, and wetness images. This transformation is a
linear rotation which allows reducing the dimensionality of the datain a
manner appropriate for the sensor and the discrimination of natural
surface materials. Figure 2 shows the brightness image, which is
essentially panchromatic. A hybrid approach to image classification
combining supervised and unsupervised classification strategies was
taken. The approach involves the manual selection of training sets for
each surface material category. However, the distribution of each
category is not assumed unimodal; i.e., the clustering algorithm is
applied to each category. The clusters for each category are combined,
and the segmentation algorithm is applied. Figure 3 shows the
segmentation result, where the grey-level mapping is given by the
cluster mean in brightness. A total of 51 clusters are represented, each
of which corresponds to one of nine surface material classes of interest:
agriculture, urban, bare soil, open water, grassland, brush/scrub,
deciduous forest, coniferous forest, and mixed forest.

Accuracy of the surface material classification obtained using the
segmentation was measured based on ground truth obtained from
1:15,840 scale SCS orthophotos, field notes and terrestrial
photographs. A 95% confidence interval was constructed for the overall
classification accuracy according to [15]. The overall classification
accuracy with respect to the nine surface material classes was 86.8%,
which is good relative to other research using similar classification
categories [11], [18]. The agriculture, open water, grassland,
coniferous forest and mixed forest classes yielded the best results (82.9
- 95.6 %). The lowest classification agreement was for the urban (79.5
%) and brush/scrub (58.5 %) classes, which is attributable to their
consisting of relatively complex mixtures. More detail on this
experiment may be found in [2].

Summary

A new segmentation algorithm is described using a rigorous
statistical framework. The presentation includes the extension of a
histogram analysis technique to a multi-dimensional setting, as well as
the extension of results of single-image segmentation studies for
application to multi-dimensional data.

REFERENCES

{11 J. E. Besag, "Spatial interaction and the statistical analysis of lattice systems,"
J. Roy. Stat. Soc., Ser. B, vol. 36, 1974, pp. 192-236.

{21 M. W. Brennan, T.J. Moore, and B. L. Spence, "Ten meter database
development using Landsat Thematic Mapper and digitized map data:
preliminary results," Tech. Papers 1989 ASPRS-ACSM Ann. Conv., vol. 3,
pp. 165-172.

[3] M. J. Carlotto, "Histogram analysis using a scale-space approach,” JEEE Trans,

Pat. An. Mach. Intel., vol. PAMI-9, no. 1, Jan. 1987, pp. 121-129.

{41 E.P.Cristand R. C. Cicone, "A physically-based transformation of Thematic
Mapper data -- the TM tasseled cap,” IEEE Trans. Geo. Rem. Sens., vol.
GE-22, no. 3, May 1984, pp. 256-263.

[5] F.S.Cohen and D. B. Cooper, "Real time textured image segmentation based
on noncausal Markovian random field models," Proc. SPIE Conf. Intel.
Robots, Cambridge, MA, Nov. 1983,

{6] H. Derin and H. Elliott, "Modeling and segmentation of noisy and textured
images using Gibbs random fields,” JEEE Trans. Pat. An. Mach. Intel., vol.
PAMI-9, no. 1, Jan. 1987, pp. 39-55.

[71 R.O.DudaandP. E. Hart, Pattern Classification and Scene Analysis. New
York: Wiley, 1973.

[8] K.S.FuandJ. K. Mui, "A survey on image segmentation," Patt. Recog., vol.
13, pp. 3-16.

[9] S.Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images," JEEE Trans. Pat. An. Mach. Intel., vol.
PAMI-6, Nov. 1984, pp. 721-741.

[10] R. M. Haralick and L. G. Shapiro, "Image segmentation techniques,” Comp.
Vis., Gr., Img. Proc., vol. 29, 1985, pp. 100-132.

[11] M. Hashim, "Crop identification using merged Landsat multispectral scanner
and Thematic Mapper data: preliminary analysis,” Tech. Papers 1988
ASPRS-ACSM Ann. Conv., vol. 4, pp. 11-20,

512

Fig. 2. Brightness image.

Fig. 3. Segmentation.

[12] T.Kanade, "Region segmentation: signal vs semantics,” Computer Graphics
and Image Processing, vol. 19, 1980, pp, 279-297.

{131 P. A. Kelly, H. Derin and K. D. Hartt, "Adaptive segmentation of speckled
images using a hierarchical random field model,” JEEE Trans. Acoust., Speech,
Sig. Proc., vol. ASSP-36, Oct. 1988, pp. 1628-1641.

[14] S. Kullback, Information Theory and Statistics. New York: Dover, 1968.

[15] J. Neter, W. Wasserman, and G. A. Whitmore, " Applied Statistics. Boston:
Allyn and Bacon, Inc., 1982.

[16] R.Redner and H. Walker, "Mixture densities, maximum likelihood and the EM
algorithm," STAM Review, vol. 26, no. 2, Apr. 1984, pp. 195-239.

[17] J.T.Tou and R. C. Gonzalez, Pattern Recognition Principles. Reading, MA:
Addison Wesley, 1974,

[18] J. Vogel, "An evaluation of the use of TM digital data for updating the land
cover component of the SCS 1987 multiresource inventory of New Jersey,”
Tech. Papers 1987 ASPRS-ACSM Ann. Conv., vol. 1, pp. 113-119.



