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ABSTRACT

A data-based model of associative memory is described which uses statistical inference techniques to estimate
an output response from a set of inputs and a database of previously stored patterns. The model is easily scaled in terms
of the number of patterns that can be stored in the database as well as the number of fields in a pattern. Other features
include the ability to change the input and output fields, to adjust the amount of generalization performed by the
associative memory, and to control the size of the database by pruning redundant or conflicting patterns. Applications
of associative memories to a wide variety of problems are illustrated to motivate their use as general system building
blocks. Implementations in hardware and software are discussed.

1. INTRODUCTION

Most intelligent systems perform some kind of "low level” numerically-intensive processing (e.g., as is
required in early vision for shape recovery, object/background segmentation, and grouping) as well as "high-level”
symbolic processing (e.g., for scene interpretation, natural language understanding, etc.). As a result, these systems
tend to be divided into low-level, algorithm-based and high-ievel, knowledge-based modules. While connectionism
provides a new perspective on what has been perceived as a dichotomy between low and high level processing,
implementations of connectionist models using neural networks have proven to be unsatisfactory in some ways.
Practical problems exist with respect to training, scaling, and in understanding and controlling the way neural networks
perform generalization. The concept of memory-based reasoning1 has been suggested as an alternative to neural
networks which, instead of attempting to build associations via connection weights between neurons, computes an
output response by comparing the input to a large database of previously stored patterns.

This paper expands the idea of memory-based reasoning to the more general paradigm of associative memory.
Section 2 reviews some classical models of associative memory with particular attention to the number of patterns that
can be correctly recalled and the ease with whict: the memory can be reconfigured (i.e., inputs and outputs changed). A
new computational model, the data-based model of associative memory, is presented in Section 3. It too is also based
on the idea of storing a large number of patterns or training vectors in a database, but uses statistical inference
techniques rather than heuristics for estimating an output response. Means for adjusting the amount of generalization
performed by the associative memory and for controlling the size of the database by pruning redundant or inconsistent
patterns are also discussed. In Section 4, a number of problems are formulated in terms of the associative memory
paradigm. Section 5 describes initial implementations on a Symbolics and a Connection Machine and outlines possible
VLSI and optical implementations. The generality of the associative memory paradigm along with the potential for
implementing practical associative memory processors in hardware and software motivates a new approach to system
development. Section 6 discusses this idea and suggests future directiors.

2. COMPUTATIONAL MODELS OF ASSOCIATIVE MEMORY
The basic model of associative memory is a "black box™ with vector input x and vector output y.
Associations are created by simultaneously presenting input x and output y vectors in a "learning mode". In "recall

mode", a partial pattern x* is presented to the associative memory and used to access or compute the rest of the pattern
y*. Two classical models of associative memory are now reviewed.
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2.1 Correlation Matrix Model

The correlation matrix model? associates input vectors x) with output vectors y) via a correlation matrix
M=Y XT where X and Y are rectangular matrices having input vectors xj and associated output vectors yy as their
columns respectively. If the {xy} are orthonormal and the number of input vectors K < N, the number of elements in
an input vector, K patterns can be stored in the associative memory without confusion. To increase the number of
patterns to K', the size of the input vector must be increased to N' = K' or cross-talk will occur, i.e., the output will
contain contributions from more than one yj.. Cross-talk will also occur if the xj are not orthonormal; thus, the input
vectors must be preprocessed, e.g., via a Gram-Schmit procedure. A disadvantage of the correlation matrix memory is
that the input and output fields cannot be changed without recomputing M.

2.2 Hopfield Model

The Hopfield model of associative memory3 is based on a network of N neurons interconnected as
up =sgn ( Z Wy U - b ) where W = (wp .} is a mairix of weights and t;, are thresholds. The weight matrix is built
by accumulating outer products of training vectors W = Xy uy . Once the weight matrix has been computed, patterns
can be recalled by clamping those fields of the state vector that are known (i.e., those elements that correspond to the
input) and allowing the network to compute those that are unknown (i.e., those elements that correspond to the
output). An advantage of the Hopfield model over the correlation matrix memory is that any subset of neurons can
serve as the input field. The capacity of the Hopfield network is upper bounded by N pat_terns4; Hopﬁeld3 finds
empirically that about 0.15N patterns can be stored without confusion. Like the correlation matrix memory, in order to
increase the number of patterns, the size of the state vector y must be increased.

3. ADATA-BASED MODEL OF ASSOCIATIVE MEMORY

The data-based model of associative memory5 is essentially an auto-associative scheme that involves storing a
set of patterns {zy} in a database and using statistical inference to recall the full pattern by estimating the output as a
function of the input and the entire database. The capacity is equal to the size of the database, which can be easily
increased without having to alter its structure. The associative memory is easily scaled in terms of the number of fields
N, where any can be though of as inputs or outputs and can represent numerical or categorical data. For brevity, the
following discussion is limited to numerical data. A more complete description of the data-based model can be found in
Ref. 5.

3.1 Associative Recall by Statistical Inference

Assume that {z;} is a random sampling of an underlying joint probability density p(z) and consider the
problem of determining a value y* for an output field from the values x* of one or more input fields. (The problem of
estimating a vector of outputs can be reduced to this case by determining each output field separately.) If the underlying

density were known, it can be shown that the optimal estimate (in the least-squares sense) for y* given x* is given by
the conditional mean,

y*=[yp(y!x*)dy = [y p(y,x*)dy / | p(y, x*) dy. )

By approximating the underlying joint density as
p(z) = % O(zy, ) @

where ®(zy, z) = (2n02)‘N/2 exp [- (zk - ;)T(;k -2)/ 262 1, the optimal estimate can be written as:
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y* = >13(<D(&k, x*) yk/ i D(xi, X*). ®

The above estimate for y* is a weighted sum of the {yy ) divided by a normalizing factor that is equal to the sum of the
weights. The kth weight depends on the distance between x* and xj, and decreases as the distance increases.

Fig. 1 illustrates the problem of learning the non-linear mapping y = xZ for 0 < x < 256. In the training
mode, the associative memory was presented K input-output pairs {xy, y=f(xy)}, where the xy were generated at
random. The true and estimated values for y using K=10 and K=50 patterns are shown in (a) and (b). As one would
expect, the accuracy of the estimate improves as the number of training vectors increases.

3.2 6-Tuning

The estimated output depends on the contents of the database, the value of the input, and the smoothing factor
6. As ¢ decreases, y* approaches the value yy corresponding to the xj that is nearest to x*. As ¢ increases, the
estimates depend on yy that are farther away. Thus ¢ controls the amount of generalization performed by the
associative memory.

A value for ¢ can be computed using "leave-one-out” proceduresé. Let yi™* be the estimate of yy obtained by
leaving out the kth training vector z,

Yic* = 2 (e 5 yie /3 Pl 1) @

Clearly, if the zj are kept, the estimate could only get worse as ¢ was increased. By not using it, the error | yp* - yy |
depends only on {zy'} k' # k and will increase as ¢ either becomes 0o small or too large. A computational procedure
for finding a suitable smoothing factor is to sweep ¢ logarithmically over some scale range using the value that
minimizes

e(o) = Zl:(| v - vk (5

The plot of €(G) vs. c for 1 < 6 < 10 is shown in Fig. 2 for the y = x2 example presented earlier, for K=50 patterns.
(The optimal value 62 = 50 was used in Fig. 1b.) Fig. 3 shows the dramatic effect the smoothing parameter can have
on the estimate. Here, the results for K=10 patterns using the optimal value 62 =500, and values 50 times smaller and
larger, are shown for comparison. As the smoothing factor decreases the estimate becomes a staircase where the levels
are equal to the nearest yy. As the smoothing factor increases, the estimates approach the average of all the yy.

3.3 Database Pruning

As the number of patterns in the database increases, the accuracy of the associative memory will generally
improve. However it is a desirable feature to be able to remove vectors that are redundant (i.e., similar to other vectors
in the database), or inconsistent (e.g., having the same input field values but different output field values). One
procedure for pruning the database is to use the "leave-one-out" procedure discussed above to compute the error

o) =21y -y ©

where yy* is the estimate of yy obtained by leaving out the kth training vector zy. The errors can then be used to
rank the training vectors. Fig. 4 shows the g(k) plotted in ascending order for the K=50, y= =x2 example. The first 14
patterns were removed from the database (28% reducuon in size) without any significant effect on the accuracy. The use
of the principle of minimum description length is being investigated for determining the optimal number of training
vectors.
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4. ASSOCIATIVE MEMORIES AS BUILDING BLOCKS

A large number of problems can be cast in an associative memory framework: learning input/output
mappings and the solution of inverse problems, pattern classification, signal recovery from partial information, and
rule-based systems, to name just a few. Several examples are presented below to motivate the idea of using associative
memories as system building blocks.

4.1 Learning Input-Output Mappings

Suppose one would like to compute y = f(x) or the inverse x = f‘l(y) without knowing f( ). Examples include
learning scene parameters8 and modeling the dynamics of robot arms?. If f() is linear, then least-squares techniques can
be used. However if the mapping is non-linear such as the y = x2 problem presented earlier or is simply not known,
and a large number of training vectors {xy,yy} are available or can be generated, associative memories provide an
attractive alternative. In addition, given y = {(x), the inverse x = £1 (y) can be solved with an associative memory
provided the transformation is one-to-one by training on {xy,yy} as before, and reversing the sense of the inputs and
outputs so that, in effect, one is estimating x* from y*. Fig. 5 shows the result of inverting the y = x2 problem from
Fig. 1b using the data-based associative memory with K=50 training vectors.

4,2 Pattern Classification

Associative memories can also be thought of as non-parametric pattern classifiers. Let x = {x,,} be an
N-dimensional measurement vector and y = {yp,} be a vector of hypotheses each corresponding to one of M classes of
interest. A pattern can be classified into one of the M classes by assigning the measurement to the class m
corresponding to the largest Ym- For example, consider the problem of classifying points as lying inside or outside a
circle of radius R. The input is the position of the point and the output is one if a point is inside the circle and zero
otherwise. Fig. 6 shows the decision regions for K = 2, 10, and 50 training vectors. Results presented by Llppman10
suggest that significantly more (~ 200) training vectors are required for a back-propagation classifier to learn circular
decision regions. After training the data-based associative memory on 200 random points inside and outside the circle,
500 unknown points were classified with a correct classification rate greater than 98%.

4.3 Signal Reconstruction

Signal reconstruction from partial information (e.g., recognizing instances of known objects in the presence
of occlusions) is essentially an auto-associative problem. Let z represent a discrete signal z(n). Consider the problem of
recovering a class of signals that are symmetric about the center. A database was generated that contained 1000
six-dimensional vectors of the form ABCCBA where the first three elements were random numbers between -128 and
128. Once the database was loaded, the system was queried with partial vectors to see how it would fill in the missing
information. Several examples are presented below:

[0100 -100 2 7 2?1 = [0 100-100-106 91.76]
[0 2 -100 ? 100 ? ] = [0 91 -100-106100.76]
[ 7100 -100 2 ? 71 = [30100-100-104 100 301].

The associative memory is able to recover the full signal even in the last case with 60% of the information missing.
Evidently the associative memory has also developed an implicit model of the symmetry reflected in the database.

4.4 Rule-Based Systems

Previous examples have shown how associative memories can perform numerical computation. An early
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motivation for the present work was the idea of memory-based reasoning1 which involves drawing inferences directly
from a large database of undigested facts and experiences. This is in contrast with traditional methods that use rules
which must first be derived inductively, often with great effort, from experts. Rule-based systems can be cast in an
associative memory framework by viewing the {zy} as either data or rules. Patterns can be thought of as being divided
into "if" and "then" fields, for convenience. For example, consider a subset of Winston's animal world!1 that deals
with mammals and birds:

If (animal has hair) then (animal is mammal)

If (animal gives milk) then (animal is mammal)

If (animal has feathers) then (animal is bird)

If (animal flies) and (animal lays eggs) then (animal is bird)

Let the pattern vector z be divided into the following seven fields

z(1): "has-hair” z(2): "is-mammal” z(3): "gives-milk"
z(4): "has-feathers" z(5): "is-bird" z(6): "flies"
z(7): "lays-eggs”

that can take on the values: +1, -1, and 0 if the assertion is true, false, or unknown. The above four rules can thus be
represented by two patterns:

z1=[+1+1+1-1-1-1-1Jandzp = [-1-1-1+1 +1 +1 +1].
The following are example responses from the associative memory where ? denotes an output field:

[2+41 72 2 2 72 7] = [+1+1+1 -1 -1 -1 -1]
[2 2 2 24141 2] = [-1 -1 -1+41+1+1+1]
+1?2 2 72 7 +1 721 = [@+1 0 0 O O+1 O].

The last example clearly represents a reasonable response to contradictory information that was not explicitly accounted
for in the database. Finally it is noted that in associative memory realizations of rule-based expert systems, there do not
have to be preferred inputs or outputs.

5. IMPLEMENTATIONS OF ASSOCIATIVE MEMORY
5.1 Software Implementations

The initial version of the data-based associative memory was implemented on a Symbolics in Lisp. Databases
are implemented as arrays that are accessed through structures so that multiple associative memories can be defined,
interconnected, and exercised simultaneously. An interactive environment was created to allow a user to create an
instance of a database with an arbitrary number of fields (symbolic or numeric), to read/write a database from/to disk, to
print the contents of a database, to merge multiple databases, to store and delete patterns in a database, to perform
generalization, to prune a database, and finally to run and evaluate the performance of an associative memory.

To investigate larger problems, a data-parallel version of the associative memory was implemented on a
Connection Machinel2. Two virtual-processor sets within the machine are defined: one for the database and the other
for the domain of interest, which are images. An output image is computed by accumulating the response of an input
image(s) across each pattern in the database (in actuality, the numerator and denominator in Eq. 3 are accumulated
separately and divided at the end). Fig. 7 is the result of using the Connection Machine based associative memory to
detect roads in multispectral imagery. The input to the associative memory x(i,j) is a image of multispectral vectors
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and the output y(i,j) is equal to one if a road is present and zero otherwise. A database of training vectors was built over
one area in the image using ground truth. The entire image was then processed, accumulating the results in place in
time proportional to the number of training vectors. A decision rule was applied that assigned the pixel (i,j) to aroad if
y(i,j) > 0.5. The results over another area were compared to independent ground truth with a correct classification rate
of 98%.

5.2 Hardware Implementations
Like VLSI implementations of classical content addressable associative memories]3, the structure of the

data-based associative memory appears to be amenable to modular hardware implementations as well. With reference to
Eq. 3, an associative memory and database can be partitioned into a number of smaller databases as:

Z O(xy, x*) yg + T O(xg, X*) yp + ...
Ky Ko

g = @)

T O(xy, x*) + L D(xg, x*) + ...
K1y Ko

Fig. 8 is a hardware block diagram of a proposed "data-slice” associative memory processor. Each slice is associative
memory unit (AMU) having N interconnected sets of tri-state input/output lines and corresponding control lines that
define the input and output fields. Additional chip interconnects are required to pass the partial sums in the numerator
and denominator between AMUSs. Each AMU would contain local memory for storing a portion of the database, an
arithmetic unit for computing a contribution to the output estimate, and a controller for coordinating inter-AMU data
transfers. Ways of partitioning the computation by field and word would need to be developed as well for truly general
and extensible realizations in hardware.

Finally, the possibility of an optical realization of the data-based associative memory is considered. An optical
processing architecture is depicted in Fig. 9. The input vector x* is introduced at P1 using an array of light emitting
diodes, for example. Optics spread the light horizontally while imaging the input vector vertically onto a mask at Py
that contains the database vectors, {zy }. Optics between P and P3 integrate the light transmitted through the mask
vertically while imaging horizontally. The intermediate result at P3 can be thought of as a vector of weighting factors.
Assume for the moment that a diffuser is placed at P3 to uniformly scatter the incident light and that the imaging
optics between P and P3 are replicated between P53 and P5. (Alternatively, a mirror could be placed behind the diffuser
to reflect the {wy} back and allow the outputs to be read out at Py). The result at Py is y* =Y XTx* where X = {xx)
and Y = {yy }. The architecture in Fig. 9 is thus an optical implementation of Kohonen's cross-correlation associative
memory.

In order to implement the data-based associative memory, either some kind of non-linear optical device must
be placed at P3 or an iterative electro-optical processor (I0P)14 be employed. The problem is in computing the
exp [ - (x* - Lk)T x*-xK)/ 262 weighting factors. The IOP is an optical vector-matrix multiplier in an electronic
feedback loop that contains a high-speed digital signal processor. The exponent is the sum of three terms:

a* - x0T - xg) = x¥Txx -2 x4 Txy + % Ty, ®

For each new database, the third term can be computed once initially by cycling the xy through the input and storing
the llek in the digital signal processor. Then, for each new input vector, x* ' x* can be computed electronically, and
added to the prestored x 1 xj along with the L*le that are being computed optically during the first IOP cycle. In the
second cycle, the previous result is fed back through the vector matrix multiplier a second time to form the final
output.
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6. SUMMARY

A number of new ideas have been discussed in this paper: a modular, data-based model of associative memory,

the general utility of associative memories in performing algorithm- and knowledge-based computation, and the
implementation of practical associative memory processors in hardware and software. It is our belief that the realization
of large, reconfigurable, and flexible associative memory modules will provide a new perspective on system design and
implementation. One could envision the implementation of intelligent systems having diverse functionalities in a
homogeneous fashion using a common building block whose behavior is entirely data-dependent.
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Fig.1 True and estimated values of y = x> for K=10 training vectors (a) left, and K=50 training vectors (b) right

Fig.2 Plot of the £(c) between 62 = 1 and 62 = 100
for the y= x2 K=50 problem. The minimum value
62 = 50 was used in Fig. 1b.

Fig. 3 Effect of the smoothing factor ¢ on the estimate
for the y= x2 K=10 problem. The optimal value
62 = 500 and values 50 X smaller and larger shown.
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Fig. 4 Plot of e(k) for the y= x2 K=50 problem.
Removing the first 14 training vectors reduces the
database by 28% without affecting the accuracy.

Fig. 6 Decision regions for the circle problem. Top

Fig. 5 True and estimated values for x =y (K=50). o bottom: K=2, 10, and 50 training vectors.
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Fig. 7 Example of Connection Machine version of the data-based associative memory for detecting roads in Landsat
TM imagery. The system was trained over area A. The associative memory and database were then used to classify the
entire image. Results over area B were compared with ground truth and shown to be 98% correct.

input/output bus

AMU partial sums AMU I:l [:I partial sums AMU
P ¢ — >
inter-AMU inter-AMU

control lines control lines

external control lines

Fig. 8 Organization of a "data-slice™ associative memory processor. Each associative memory unit (AMU)
computes a part of the estimate.
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Fig. 9 Optical processor realization of associative memory (see text).
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